300 research outputs found

    A unified approach to substructuring and structural modification problems

    Get PDF
    Substructures coupling is still an important tool in several applications of modal analysis, especially structural modification and structures assembling. The subject is particularly relevant in virtual prototyping of complex systems and responds to actual industrial needs. This paper analyzes the possibility of assembling together different substructures' models. The important role of rotational DoFs is highlighted, underlying the difficulty of assembling theoretical and experimental models, for which, usually, the rotational DoFs are not available. Expansion techniques can be used to provide this information as well as appropriate modelling of joints. With this information FRF models, modal models and FE models can be appropriately combined together and solutions for several cases of practical interest are presented. The analyzed procedures are tested on purpose-built benchmarks, showing limits and capabilities of each of them

    A TOSCA-Based Conceptual Architecture to Support the Federation of Heterogeneous MSaaS Infrastructures †

    Get PDF
    Modeling and simulation (M&S) techniques are effectively used in many application domains to support various operational tasks ranging from system analyses to innovative training activities. Any (M&S) effort might strongly benefit from the adoption of service orientation and cloud computing to ease the development and provision of M&S applications. Such an emerging paradigm is commonly referred to as M&S-as-a-Service (MSaaS). The need for orchestrating M&S services provided by different partners in a heterogeneous cloud infrastructure introduces new challenges. In this respect, the adoption of an effective architectural approach might significantly help the design and development of MSaaS infrastructure implementations that cooperate in a federated environment. In this context, this work introduces a MSaaS reference architecture (RA) that aims to investigate innovative approaches to ease the building of inter-cloud MSaaS applications. Moreover, this work presents ArTIC-MS, a conceptual architecture that refines the proposed RA for introducing the TOSCA (topology and orchestration specification for cloud applications) standard. ArTIC-MS’s main objective is to enable effective portability and interoperability among M&S services provided by different partners in heterogeneous federations of cloud-based MSaaS infrastructure. To show the validity of the proposed architectural approach, the results of concrete experimentation are provided

    Friction-induced vibrations in the framework of dynamic substructuring

    Get PDF
    In complex vibrating systems, contact and friction forces can produce a dynamic response of the system (friction-induced vibrations). They can arise when different parts of the system move one with respect to the other generating friction force at the contact interface. Component mode synthesis and more in general substructuring techniques represent a useful and widespread tool to investigate the dynamic behavior of complex systems, but classical techniques require that the component subsystems and the coupling conditions (compatibility of displacements and equilibrium of forces) are time invariant. In this paper, a substructuring method is proposed that, besides accounting for the macroscopic sliding between substructures, is able to consider also the local vibrations of the contact points and the geometric nonlinearity due to the elastic deformation, by updating the coupling conditions accordingly. This allows to obtain a more reliable model of the contact interaction and to analyze friction-induced vibrations. Therefore, the models of the component substructures are time invariant, while the coupling conditions become time dependent and a priori unknown. The method is applied to the study of a finite element model of two bodies in frictional contact, and the analysis is aimed to the validation of the proposed method for the study of dynamic instabilities due to mode coupling

    A Model Based Framework for IoT-Aware Business Process Management

    Get PDF
    IoT-aware Business Processes (BPs) that exchange data with Internet of Things (IoT) devices, briefly referred to as IoT-aware BPs, are gaining momentum in the BPM field. Introducing IoT technologies from the early stages of the BP development process requires dealing with the complexity and heterogeneity of such technologies at design and analysis time. This paper analyzes widely used IoT frameworks and ontologies to introduce a BPMN extension that improves the expressiveness of relevant BP modeling notations and allows an appropriate representation of IoT devices from both an architectural and a behavioral perspective. In the BP management field, the use of simulation-based approaches is recognized as an effective technology for analyzing BPs. Simulation models need to be parameterized according to relevant properties of the process under study. Unfortunately, such parameters may change during the process operational life, thus making the simulation model invalid with respect to the actual process behavior. To ease the analysis of IoT-aware BPs, this paper introduces a model-driven method for the automated development of digital twins of actual business processes. The proposed method also exploits data retrieved by IoT sensors to automatically reconfigure the simulation model, to make the digital twin continuously coherent and compliant with its actual counterpart

    Evaluation of different contact assumptions in the analysis of friction-induced vibrations using dynamic substructuring

    Get PDF
    Dynamic substructuring methods are initially developed for time-invariant systems to evaluate the dynamic behavior of a complex structure by coupling the component substructures. Sometimes, the component substructures change their position over time, affecting the dynamics of the entire structure. This family of problems can be tackled using substructuring techniques by isolating the time dependency in the coupling conditions among the time-invariant substructures. Mechanical systems, composed of subsystems in relative motion with a sliding interface, can be analyzed using this approach. In previous work, the authors proposed a solution method in the time and frequency domain using this approach under the assumption that the relative sliding motion at the contact interfaces is a-priori known, at least approximately. This assumption implies that the perturbation generated by the friction-induced vibration is neglected. In subsequent work, a more realistic contact assumption was considered to account also for the local vibration of the contact point and the geometric nonlinearity due to the elastic deformation. In this paper, a simplification with respect to the realistic contact assumption is introduced, which neglects the angular variation of the direction normal to the contact interface. The simplified approach is advantageous because it is equally able to highlight the occurrence of friction-induced instabilities, and it reduces the computational burden. The results of the substructuring methods using different contact assumptions are compared with those of a reference numerical method to show how the choice of the contact algorithm allows for tackling a wide range of operating conditions, from simple position-dependent problems up to complex friction-induced vibration phenomena

    E-MDAV: A Framework for Developing Data-Intensive Web Applications

    Get PDF
    The ever-increasing adoption of innovative technologies, such as big data and cloud computing, provides significant opportunities for organizations operating in the IT domain, but also introduces considerable challenges. Such innovations call for development processes that better align with stakeholders needs and expectations. In this respect, this paper introduces a development framework based on the OMG's Model Driven Architecture (MDA) that aims to support the development lifecycle of data-intensive web applications. The proposed framework, named E-MDAV (Extended MDA-VIEW), defines a methodology that exploits a chain of model transformations to effectively cope with both forward- and reverse-engineering aspects. In addition, E-MDAV includes the specification of a reference architecture for driving the implementation of a tool that supports the various professional roles involved in the development and maintenance of data-intensive web applications. In order to evaluate the effectiveness of the proposed E-MDAV framework, a tool prototype has been developed. E-MDAV has then been applied to two different application scenarios and the obtained results have been compared with historical data related to the implementation of similar development projects, in order to measure and discuss the benefits of the proposed approach

    A lightweight BPMN extension for business process-oriented requirements engineering

    Get PDF
    Process-oriented requirements engineering approaches are often required to deal with the effective adaptation of existing processes in order to easily introduce new or updated requirements. Such approaches are based on the adoption of widely used notations, such as the one introduced by the Business Process Model and Notation (BPMN) standard. However, BPMN models do not convey enough information on the involved entities and how they interact with process activities, thus leading to ambiguities, as well as to incomplete and inconsistent requirements definitions. This paper proposes an approach that allows stakeholders and software analysts to easily merge and integrate behavioral and data properties in a BPMN model, so as to fully exploit the potential of BPMN without incurring into the aforementioned limitation. The proposed approach introduces a lightweight BPMN extension that specifically addresses the annotation of data properties in terms of constraints, i.e., pre- and post-conditions that the different process activities must satisfy. The visual representation of the annotated model conveys all the information required both by stakeholders, to understand and validate requirements, and by software analysts and developers, to easily map these updates to the corresponding software implementation. The presented approach is illustrated by use of two running examples, which have also been used to carry out a preliminary validation activity

    Nonlinear substructuring in the modal domain: numerical validation and experimental verification in presence of localized nonlinearities

    Get PDF
    In many systems of interest, most of the structure is well approximated as linear but some parts must be treated as nonlinear to get accurate response predictions: significant nonlinear effects are due to the connections between coupled subsystems, such as in automotive or aerospace structures. The present work aims at predicting the nonlinear behavior of coupled systems using a substructuring technique in the modal domain. This study focuses on the effects of nonlinear connections on the dynamics of an assembly in which the coupled subsystems can be considered as linear. Each connection is instead considered as a quasi-linear substructure with stiffness that is function of amplitude or energy. The iterative procedure used here is enhanced with respect to previous works by enforcing a better control of the total energy at each iteration allowing to obtain the solution for a prescribed set of energy levels. Also, the initial guess and the convergence criterion have been modified to speed up the procedure. This technique is applied to a system made of two continuous linear subsystems coupled by nonlinear connections. The numerical results of the coupling are first compared to the ones obtained by using the Harmonic Balance technique on the model of the complete assembly to evaluate its effectiveness and understand the effects of modal truncation. Besides, a nonlinear connecting element, specifically designed in order to have a nearly cubic hardening behavior, is used in an experimental setup. Substructuring results are compared to experimental results measured on the assembled system, in order to evaluate the correlation between mode shapes and the accuracy in the resonance frequency at several excitation levels

    Development of a digital twin for a hydraulic, active seat suspension system

    Get PDF
    The vibrations induced by the soil irregularities and other equivalent disturbances on agricultural tractors represent a major cause of disease for tractor drivers. The reduction of vibration exposure of operators is a topic of interest for the (Italian) National Institute for Insurance against Accidents at Work (INAIL). Several passive, semi-active, and active solutions are commercially available for the seat or the cabin suspension to isolate the driver from the vibrations. A prototype of a hydraulic active suspension system for the operator seat has been developed in the laboratories of INAIL. In this paper, nonlinear multi-physics modeling of the prototype has been carried after an experimental identification of the actuation system and specifically of the control valve parameters. The model is adjusted to retrace the system’s response and is used as a digital twin of the physical prototype to develop and optimize the control system. An equivalent simplified model is obtained to design a proper control strategy for the active suspension system. Finally, the controller is tested on the digital twin of the system to assess its performance in isolating vibrations

    Depletion of TDP-43 affects Drosophila motoneurons terminal synapsis and locomotive behavior

    Get PDF
    Pathological modifications in the highly conserved and ubiquitously expressed heterogeneous ribonucleoprotein TDP-43 were recently associated to neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), a late-onset disorder that affects predominantly motoneurons [Neumann, M. et al. (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130-133, Sreedharan, J. et al. (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668-1672, Kabashi, E. et al. (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat. Genet. 40, 572-574]. However, the function of TDP-43 in vivo is unknown and a possible direct role in neurodegeneration remains speculative. Here, we report that flies lacking Drosophila TDP-43 appeared externally normal but presented deficient locomotive behaviors, reduced life span and anatomical defects at the neuromuscular junctions. These phenotypes were rescued by expression of the human protein in a restricted group of neurons including motoneurons. Our results demonstrate the role of this protein in vivo and suggest an alternative explanation to ALS pathogenesis that may be more due to the lack of TDP 43 function than to the toxicity of the aggregates. © 2009 Federation of European Biochemical Societies
    • …
    corecore